Infinite Series - Numberphile

Infinite Series - Numberphile

Numberphile

6 лет назад

452,357 Просмотров

Ссылки и html тэги не поддерживаются


Комментарии:

@Harambae613
@Harambae613 - 22.12.2019 17:38

The real reason Achilles can never reach the tortoise is because it turned around, bit him in the ankle, and Achilles died.

Ответить
@nathanwilson7929
@nathanwilson7929 - 08.02.2020 00:03

I noticed that infinite numbers graph finite shapes and finite numbers graph infinite series.

Ответить
@WindowsXP_YT
@WindowsXP_YT - 19.02.2020 17:50

What about 1/3+1/9+1/27+1/81... and 1/9+1/81+1/729+1/6561...?

Ответить
@saurabhdubey3664
@saurabhdubey3664 - 20.02.2020 11:54

Well this man kinda looks like Qassim Soleimani 😅

Ответить
@duckmeister5385
@duckmeister5385 - 07.03.2020 06:42

I'm so tired of pi. This video is about plain old infinite series, so I should be safe.

Ответить
@priyankanarula5454
@priyankanarula5454 - 14.03.2020 20:45

in which category you place infinity number theort

Ответить
@professorsogol5824
@professorsogol5824 - 02.05.2020 06:35

Someone should have told the Mayans about the harmonic series to help them improve on their Corbel arches and vaults.

Ответить
@lornemcleod1441
@lornemcleod1441 - 16.05.2020 17:25

This is great, I'm learning about these I my Cal II class, and this just deepens my understanding of the infinite sums and series

Ответить
@sasisarath8675
@sasisarath8675 - 14.06.2020 18:36

I love the way he handled the infinity question !

Ответить
@nekogod
@nekogod - 27.06.2020 20:16

The second series grows super slowly by the time you get to 1/1,000,000 you'll have only got to 14.39

Ответить
@nikitabelousov5643
@nikitabelousov5643 - 08.07.2020 23:32

animation is a blast!

Ответить
@andynicholson7944
@andynicholson7944 - 12.07.2020 11:34

This is the weirdest Burke’s Backyard crossover ever.

Ответить
@venkateshbabu1504
@venkateshbabu1504 - 24.07.2020 23:31

So non linear linear and surface linear. Time mergers. Surfaces are curvatues of harmonics. Frequency squares damping.

Ответить
@divergentmaths
@divergentmaths - 28.08.2020 17:56

If you are interested to learn more about divergent series and want to understand why and how 1+2+3+4+5+6+... = -1/12,
I recommend the online course “Introduction to Divergent Series of Integers” on the Thinkific online learning platform.

Ответить
@robinbrowne5419
@robinbrowne5419 - 29.08.2020 10:56

That's one reason pi is the coolest number :-)

Ответить
@Kalumbatsch
@Kalumbatsch - 26.09.2020 05:33

Every time it starts beeping I think "Super Mario World".

Ответить
@bachirblackers7299
@bachirblackers7299 - 21.10.2020 12:14

Very smooth and lovely

Ответить
@sandyzamudio7574
@sandyzamudio7574 - 15.11.2020 23:37

im here from jujustu kaisens manga

Ответить
@adki231
@adki231 - 30.12.2020 23:11

So, according to the harmonic series (1+1/2+1/3+....),Zeno was indeed right...

Ответить
@adnanchaudhary5905
@adnanchaudhary5905 - 05.01.2021 23:54

The pile of cards with harmonic series is depicted in a math book. I've been searching for that book since a few years. I downloaded and read some part of it back in 2017. I lost it somehow and now I don't remember the name of the book. Is there anyone who knows the name of that book? Thanks!

Ответить
@sonicsid29
@sonicsid29 - 06.02.2021 13:16

Pi popping up somewhere is more annoying than a Rick Roll.

Ответить
@gomathib2310
@gomathib2310 - 18.02.2021 07:32

Infinite Series Bla Bla which Never Ends.

Ответить
@tawfeeksafadi3314
@tawfeeksafadi3314 - 19.02.2021 22:38

Pacek is:
1 ÷2
All over 12
time if you dubll 1 or 2 you will not reach the end it's infinity

Ответить
@vinayaksingh11b18
@vinayaksingh11b18 - 20.02.2021 13:57

Where's the famous "brown paper"?😕

Ответить
@anishravani5808
@anishravani5808 - 17.04.2021 08:13

Pujara ??

Ответить
@bradensorensen966
@bradensorensen966 - 30.04.2021 07:13

Summing squares of 1/x where x increments each squared value is well-known to have a relationship with pi, though.

Ответить
@gauravbharwan6377
@gauravbharwan6377 - 03.06.2021 22:17

Gazillion really

Ответить
@DudeManGuy
@DudeManGuy - 21.06.2021 00:07

This guy looks like Bob Mortimer 2

Ответить
@cellarman1223
@cellarman1223 - 26.06.2021 10:53

Zeno, messing with people's heads for millennia

Ответить
@goozeysum
@goozeysum - 20.07.2021 23:45

jujutsu kaisen that is all

Ответить
@MixedByTheScientist
@MixedByTheScientist - 23.10.2021 04:59

If we’re just going by a divergent or convergent series, why is the sum of 1+2+3+4+5… = -1/12 not mentioned even though it is divergent?

Ответить
@adriaaan.n
@adriaaan.n - 27.11.2021 12:20

Jujutsu kaisen brought me here

Ответить
@NKLStone
@NKLStone - 14.12.2021 15:57

What about the most important sum:
Sum 41?

Ответить
@atheist_ghost
@atheist_ghost - 08.01.2022 12:02

1 + (½)² + (⅓)² + ...... = π²/6. How.??

Ответить
@izayus11
@izayus11 - 15.02.2022 18:11

So, you want to have lots of annals? Become a mathematician.

Ответить
@wisdomfromAI
@wisdomfromAI - 28.05.2022 12:41

You've made Math fun. Thank you. <3

Ответить
@laszlosimo788
@laszlosimo788 - 30.09.2022 02:10

infinity is possibility (in - finity) in something, between something - there are possibilities to definition
(expression) space for existence - defined

Ответить
@a.m.a.a.r
@a.m.a.a.r - 19.11.2022 02:22

Roberto De Niro ???

Ответить
@maciej12345678
@maciej12345678 - 15.01.2023 02:04

Pulsating text animation is make from 4 frames

Ответить
@winkey1303
@winkey1303 - 29.04.2023 22:20

Thank you

Ответить
@scottabroughton
@scottabroughton - 20.08.2023 20:10

And just like that, it ends.

Ответить
@chrishelbling3879
@chrishelbling3879 - 01.09.2023 12:56

Pi creeps in where you least expect it. Right, like this video.

Ответить
@fearitselfpinball8912
@fearitselfpinball8912 - 19.11.2023 07:57

1 + 1/2 + 1/4 + 1/8…

Every possible number in this series has the same two properties in common: A. It diminishes the ‘gap’ (between the accumulating number and 2). B. It fails to close the gap between the accumulating number “2”.

Since every possible number in the whole series is incapable of closing the gap it diminishes, adding all of the numbers (the ‘infinite sum’) does not involve adding any number which reaches 2. Achilles does not catch the Tortoise.

Also, since the gap size (the distance between the accumulated number and 2) is the last number in the series (gap of 1/4 at 1+1/2+1/4) the accumulation of numbers can never result in the closure of the gap.

Ответить
@lm58142
@lm58142 - 13.12.2023 15:23

The 1st infinite series mentioned corresponds to a different Zeno's paradox - that of dichotomy paradox.

Ответить
@coreyburton8
@coreyburton8 - 30.04.2024 09:12

APRIL 30 2024 THERE ARE 593 ANNALS OF MATHEMATICS

Ответить
@lukaszrakus
@lukaszrakus - 02.06.2024 13:31

I wonder. How far on the x axies will "volume 1" move for the Grahams Number of terms?

Ответить
@eugene7518
@eugene7518 - 15.06.2024 17:13

You forgot to mention that the tortoise is always moving forward. Paradox

Ответить
@eugene7518
@eugene7518 - 15.06.2024 17:25

You forgot to mention that the tortoise is also always moving forward. Like Achilles is. You didn't solve the Zeno's paradox. That's why civilization will go on remembering Zeno and not you.

Ответить
@jonathanguzman8584
@jonathanguzman8584 - 08.08.2024 06:22

thank you for this great video

Ответить
@monicabaral8929
@monicabaral8929 - 02.03.2025 05:56

How come the sum of first 50 trillion terms in harmonic series is more than 50 trillion?

Ответить