Supercharge eCommerce Search: OpenAI's CLIP, BM25, and Python

Supercharge eCommerce Search: OpenAI's CLIP, BM25, and Python

James Briggs

1 год назад

14,629 Просмотров

Ссылки и html тэги не поддерживаются


Комментарии:

@Cropinky
@Cropinky - 09.06.2024 18:03

nice explanaysh bro

Ответить
@maxs5859
@maxs5859 - 02.06.2024 18:34

Hi! Thanks for a great notebook and walkthrough! Question: why do we fit BM25 only to `productDisplayName` field in `bm25.fit(metadata['productDisplayName'])` and not to all concatenated metadata fields (elements of meta_batch) which we use to actually encode documents? Wouldn't we miss some of the keywords present in other columns but missing in `productDisplayName`?

I thought the whole point of TF-IDF was to see first which unique keywords there are and index them. So, if we fit BM25 only to `productDisplayName` won't we basically ignore all other keywords that are in metdata but missing in `productDisplayName`? Thanks!

Ответить
@shahzainhaider2801
@shahzainhaider2801 - 21.04.2024 15:53

Discord link?

Ответить
@hemanshupan
@hemanshupan - 13.11.2023 10:34

Hello James, great content. I have 1 query. How do we handle the query "show me blue jeans under $50", this "under $50" value while building a search engine. If you can guide me, would much appreciate it, thank you.

Ответить
@JohnKing93
@JohnKing93 - 23.09.2023 00:15

Is there a reason why you didn't use CLIP to generate both image and text embeddings?

Ответить
@gowthamkrish773
@gowthamkrish773 - 06.04.2023 08:57

I'm using s1 pod and trying to create an hybrid index with 10k vectors.
Will there any pricing difference between using a dense vector index alone and using a dense+sparse vector index from pinecone side?

Ответить
@adamswang
@adamswang - 05.04.2023 04:24

very nice, the sparse and dense vector mix can apply to many sceanrios.

Ответить
@JasonMelanconEsq
@JasonMelanconEsq - 25.03.2023 16:04

This video is great! Instead of running on Colab, could you make a video that shows an up and down connection from an html front end to the Pinecone database, specifically uploading a PDF, vectoring it, querying, and displaying the results back through html? I also emailed you for some consulting work on a project. Thanks for the videos!

Ответить
@atomhero2830
@atomhero2830 - 03.03.2023 09:10

Hi thanks for sharing the video it is really useful. For this type of usage, other the Pinecone are there any other vector DB that run offline on local machine?

Ответить
@markcuello5
@markcuello5 - 03.03.2023 05:25

HELP

Ответить
@DAWEAP1
@DAWEAP1 - 02.03.2023 21:41

Great stuff!

Ответить
@chrismaley6676
@chrismaley6676 - 02.03.2023 05:06

This demo is fascinating. I would love to learn what technology to add to extend the demo, to maintain context between queries.

Ответить
@yamani3882
@yamani3882 - 02.03.2023 03:06

A demo of what we are about to learn in the beginning of the video would greatly help an infant such as myself in this field.

Ответить
@RichardHamnett
@RichardHamnett - 02.03.2023 03:03

Keep up the fantastic content mate.

Ответить
@timvw01
@timvw01 - 01.03.2023 22:59

Well explained, interesting!

Ответить
@JuanLopez-oc9yv
@JuanLopez-oc9yv - 01.03.2023 22:08

Amazing content as always. I was wondering, is it recommended to use embeddings such as the ones form Openai or cohere instead of BM25?

Ответить
@mvrdara
@mvrdara - 01.03.2023 21:58

Check the new blip model which is basically chatgpt + clip I think. Also waiting for the arxiv project on langchain

Ответить
@iknowsolittle
@iknowsolittle - 01.03.2023 21:46

This channel is shockingly good for its subscriber count. Lucky I found you. Thanks!

Ответить
@kristiansopkovic697
@kristiansopkovic697 - 01.03.2023 20:42

Good job ! :)

Ответить
@necbranduc
@necbranduc - 01.03.2023 19:49

Thanks for sharing this, James, we've already started implementing this idea in our app, after watching your video. Ofc we're using Pinecone.

Ответить